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SUMMARY

Simple lower bounds for A-; D-, E- and L-efficiency of block designs
are derived. The bounds are obtained on the basis of the eigenvalues of
information matrix C, with respect to the diagonal matrix Ry.
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1. Introduction

In some biological and industrial experiments with a small number of
experimental units, the very useful balanced designs cannot be used. In
practice optimal designs have to be applied, among which the A-, D-, E-
and L-optimal designs deserve a particular attention. The paper deals with
these experimental situations. It gives a method of assessing A-, D-, E- and
L-optimal block designs. It should be noted that in the theory of experi-
mental designs, A-, D- and E-optimality is often considered. For example,
Filipiak and Szepariska (2005) and Moerbeek (2005) considered A-, D- and
E-optimality for designs with quadratic and cubic growth curve models
and for designs for polynomial growth models with auto-correlated errors,
respectively. A-optimal chemical balance weighing designs and A-optimal
designs under a quadratic growth curve model in the transformed time
interval are presented respectively by Ceranka et al. (2007) and Filipiak
and Szepariska (2007). The E-optimality of nested row-column designs, of
designs in irregular BIB settings, of designs with three treatments and of
designs under an interference model is considered by Bagchi (1996), Mor-
gan and Reck (2007), Parvu and Morgan (2007) and Filipiak and Rézanski
(2005), respectively.
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2. Definition and notation

Any arrangement of v treatments in b blocks is called a block design d.
Let rqy = (74, ...,rdv)/, kg = (kay, ...,kdb)/ and n denote a vector of treat-
ment replications, a vector of block sizes and a number of experimental
units, respectively. Let Ry and K, be the diagonal matrices with the suc-
cessive elements of ry and kg on their diagonals. Moreover, let Ng = (ng;;)
be the v X b incidence matrix, with ng,; signifying how many times treat-
ment ¢ appears in block j. We assume that observations obtained in the
discussed design are subject to a standard linear model

y = [1,, D, A] 11,8, 7] +e,

where y is the n x 1 observation vector, [1,,D’, A’] is the n x (14 b+ v)
design matrix, partitioned into n x 1 vector 1, of unit elements, an n x b
matrix D’ whose different columns relate to different blocks, an N xv matrix
A’ whose different columns relate to different treatments; where p is the
general parameters, 3 is the b x 1 vector of block parameters, 7 is the v x 1
vector of treatment parameters; and where the n x 1 vector e of random
errors has a normal distribution specified by E (e) = 0 and E (ee’) = ¢1,,.
In variance analysis of experimental data and in the problem of comparison
of treatments, a basic role is played by the system of normal equations for
treatment parameters of the form Cr = Q, where Q = T — Nk °L is the
vector of corrected treatment sums, T and L are vectors of treatment and
block sums, respectively. The information matrix for the treatment effects
is known to be

C,=Ry— NK;'N';. (1)

Let p; (1 =0,1,...,u — 1) be eigenvalues of the matrix C; and €4, be eigen-
values of the matrix C; with respect to the matrix Ry, i.e.

Capi = €4, Rqp;i (2)

where p; are eigenvectors. Assume that 0 = €4, <€, < ... <¢q, , <1and

v—1 v—1
pa/r(d) = Z € ¢p/r(d) = H €
i=v=h h (3)

¢p/r(d) = €, dr/r(d) = Y ea

i=v—h
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where h = r (Cy) and r (Cy4) denote the rank of C4. Note that h < v — 1.
If h = v — 1 then design d is said to be connected.

The design d is A- or D-optimal if it minimizes the ¢ 4,r(d) or ¢p/r(d)
values among all possible ones from some class of designs. A design d is
E- or L-optimal if it maximizes the ¢p/r(d) or ¢, r(d) values among all
possible ones from some class of designs. The A-, D-, E- and L-efficiency
of a design d is defined to be

ool = 2B (d) ; _ ®p/n(dp)

a/r(d) = ¢a/r(d) p/r(d) = ¢p/r(d) ’ @
e/ p(d) = /R (d) e n(d) = Pr/r(d)

B/ ¢u/r (df) b orr (d})

where d%, d}), d; and d} are A-, D-, E- and L-optimal designs, respectively.

It is worth mentioning that 0 < ey/r(d) < 1, 0 < ep/p(d) < 1,
0 <ep/r(d) <land 0 < e r(d) <1thereforeif ey/r(d) =1orep, p(d) =
Loreg/r(d) =1orer/r(d) =1 then design d is A-, D-, E- and L-optimal,
respectively.

One problem with the above definitions is that optimal designs are
known only for some special cases. Therefore, in the next section lower
bounds of e4/g, ep/r, €g/r and er p will be given for appraising the
efficiencies of design d. It should be noted that functions (3) and efficiencies
(4), where Cyp; = €4, pi, are given by Brzeskwiniewicz (1996).

3. Results
3.1. Lower bounds of e,/ and ep/p

Let €, 4 b kmas,n denote the set of all block designs with the some pa-
rameters (1, v,b, kmax, h), where kyax = max{ky, : j = 1,...,b}. From
(2) we have (RdflCd) pi = €4,p; which implies that €4, are eigenvalues of
matrix Ay = Ry !C,4. Note that

v b ng v 1 b
rian =3 (1o ) <oy L,
i=1 =1 it i1 difmax T
(5)
ooy L vk — 1)
kmax kmax
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and

Z;}—_vl—h €d; U (kmax — 1)
€. = — < .
Y R - 0

Observe that

h vl 1\"
Z e;il > — and H 6;1,1 > (_) . (7)

i=v—h €d;
From (3), (5) and (6) we have ¢ 4,5 (d}) > m and ¢p,p (dp) >

h
( %) . From these inequalities and from (4) it follows that e4 /g (d) >

h2kmae Bhmaz )" 1
v(kmaz—1)b.a/r(d) and ep/p (d) = (U(kma:t—l)> " ép/r(d)’ and consequently
two efficiency lower bounds of e4/p and ep /g are defined as

! h2kmam
eA/R (d) = 'U(kmaz_]-)(bA/R(d),

h
4 _ hkmax 1
eD/R (d) - (U(kmaz_1)> ¢D/R(d) ’

(8)

3.2. Lower bounds of eg /g

From Brzeskwiniewicz (1989) it follows that if design d contains a block
which consists of m treatments and 2 < m < v — 1, then pg4, < Pc, (m)
and pq, < Tc,, where p4, denotes the eigenvalues of Cy with 0 = pg, <
Pdy < oo < fd,—y

m
Td; (kmax - 1) - kmax (kdl - 1)
v i—1
Po,(m) = - J
Gy (m) m(v —m) kmax 9)
v Tmin (kmax - ]-)
Tc, = .
Ca v—1 kmax ’
where rmax = max{rg,,...,7q,, } and rmin = min{rq,,...,7q,, }

In the above it is assumed, possibly by relabelling the treatments and
reshuffling the blocks, that the first block in design d consists of m treat-
ments with numbers 1,...,m. Note that a proof of (9) if g, =rg, = ... =



Some efficiencies of block designs 27

rq, = rq and kg, = kg, = ... = kq, = kg, is also given by Constantine
(1982). From (9) we have
P, T
€d; < (T’W < Py(m) and ¢4, < id('m) =Ty, (10)
Where Pd(m) = m(’l)v—m) . mrmax(kma;;:jT:n]j;nax (kd1_1> and Td — ﬁ . %.
Observe that from (10) we have
€a; < min{Py(m), Ty}. (11)
From (3) and (11) it follows that
¢p/r (dp) < min{Py(m), Ta} (12)
which with (4) leads to
¢p/r (d)
d . 1
er/r(d) 2 min{ Py(m), Ty} (13)
From the above formula the lower bound of eg/g is defined by
/ ¢p/r (d)
d) = . 14
“n/r () min{Py(m), Ty} 49

Note that examples of block designs with very high E-efficiency are
given by Brzeskwiniewicz and Krzyszkowska (2007).

3.3. Lower bounds of e, /g

From (3) and (5) we have

bL/R (d%) < w

kmax

The above formula and (4) imply that
kmax¢L/R(d)
v (kmax — 1)

and consequently the lower bound of e,/ is defined by

kmax d
er/r(d) = Qw- (17)

er/r(d) >
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4. Conclusion

Note that 0 < e%/R(d) <1,0< e’D/R(d) <1,0< ejE/R(d) <1,
0 < ey pld) <1 If ey p(d) =1orepp(d =1or ey y(d) =

e / r(d) = 1 then design d is A-, D-, E- or L-optimal, respectively which
follows from (4). When the design d gives e’A/R(d) (or eb/R(d) or eE/R(d) or
e’L/R(d)) close to one, then one can say that its A (or D or E or L) optimality
is high. And on the other hand, a value for e’A/R(d) (or e’D/R(d)or eE/R(d)

1 or

or e /R(d)) close to zero indicates that the discussed design is far from
being an A-optimal (or D-optimal or E-optimal or L-optimal) one.

5. Examples

We consider A-, D-, E-; L-efficiency of the following block designs:

(4) (i)

\j |1 2 3 4 5 6|rg i\j |1 2 3 4 5 6|rg
1 (4 4 3 3 3 3|20 1 (1 1111 1|6
211 00 11 1| 4 211 11 0 0 0] 3
3]/1 01 01 1| 4 3 /1 1 000 0] 2
4 10 1 11 0 1] 4 4 11 01 0 0 0] 2
500111 10]4 ke, |4 3 3 1 1 1]13
kdj 6 6 6 6 6 6] 36

In case (i) d € Q365664 and €, = 0, €d;, = %gg, €dy = €dy = %g,

117

€, = 1ap- Firstly, we calculate ¢./z(d), T,
tively in (3), (10) and (9) as: ¢a/p(d) =
1202

and Pd(3) occurrlng respec-
(105 + 115 + 117) = 4.26,

¢D/R( ) = 155 - (18)" - 117 = 1.28, d/r(d ) = 196 = 0.875, é1/r(d) =
35 (1054+2- 115+ 117) = $52 = 3.77, Ty = 5 - 2 = 1.04, P4(3) = 3% -

220565 — 9.375. Hence according to formulae (8), (14) and (17) we ob-
42.6 4-6\4
551.26 — 0-90, eD/R(d) = (53) 138 = 0.66, eZE/R(d) =
% = 0.84, e’L/R(d) = 8217 = 0.90. We can say that the A-, D-,
E- and L-efficiency of the design ( ) are high.

In case (w) de 913464 3 and €dg = 0, €d, = 0.83, €dy = 0.98, €dy = 0.64.
According to formulae as in case (i) we obtain: ¢4/r(d) = 3.77, ¢p/r(d) =
1.90, ¢p/p(d) = 0.83, ¢ /r(d) = 246, Ty = 1, Py(3) = 7, ¢/} p(d) = 0.80,
e’D/R(d) = 0.53, eE/R(d) = 0.83, e'L/R(d) = 0.82. We can say that the A-,
D-, E- and L-efficiency of the design (ii) are high.

tain: eA/R(d) =
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