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Summary

Simple lower bounds for A-, D-, E- and L-efficiency of block designs
are derived. The bounds are obtained on the basis of the eigenvalues of
information matrix Cd with respect to the diagonal matrix Rd.
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1. Introduction

In some biological and industrial experiments with a small number of
experimental units, the very useful balanced designs cannot be used. In
practice optimal designs have to be applied, among which the A-, D-, E-
and L-optimal designs deserve a particular attention. The paper deals with
these experimental situations. It gives a method of assessing A-, D-, E- and
L-optimal block designs. It should be noted that in the theory of experi-
mental designs, A-, D- and E-optimality is often considered. For example,
Filipiak and Szepańska (2005) and Moerbeek (2005) considered A-, D- and
E-optimality for designs with quadratic and cubic growth curve models
and for designs for polynomial growth models with auto-correlated errors,
respectively. A-optimal chemical balance weighing designs and A-optimal
designs under a quadratic growth curve model in the transformed time
interval are presented respectively by Ceranka et al. (2007) and Filipiak
and Szepańska (2007). The E-optimality of nested row-column designs, of
designs in irregular BIB settings, of designs with three treatments and of
designs under an interference model is considered by Bagchi (1996), Mor-
gan and Reck (2007), Parvu and Morgan (2007) and Filipiak and Różański
(2005), respectively.
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2. Definition and notation

Any arrangement of v treatments in b blocks is called a block design d.
Let rd = (rd1 , ..., rdv)

′
, kd = (kd1 , ..., kdb

)
′

and n denote a vector of treat-
ment replications, a vector of block sizes and a number of experimental
units, respectively. Let Rd and Kd be the diagonal matrices with the suc-
cessive elements of rd and kd on their diagonals. Moreover, let Nd = (ndij

)
be the v × b incidence matrix, with ndij

signifying how many times treat-
ment i appears in block j. We assume that observations obtained in the
discussed design are subject to a standard linear model

y =
[
1n,D′,∆′] [

µ,β′, τ ′]′ + e,

where y is the n× 1 observation vector, [1n,D′,∆′] is the n× (1 + b + v)
design matrix, partitioned into n × 1 vector 1n of unit elements, an n × b
matrix D′ whose different columns relate to different blocks, an N×v matrix
∆′ whose different columns relate to different treatments; where µ is the
general parameters, β is the b×1 vector of block parameters, τ is the v×1
vector of treatment parameters; and where the n × 1 vector e of random
errors has a normal distribution specified by E (e) = 0 and E (ee′) = σ2In.
In variance analysis of experimental data and in the problem of comparison
of treatments, a basic role is played by the system of normal equations for
treatment parameters of the form Cτ = Q, where Q = T−Nk−δL is the
vector of corrected treatment sums, T and L are vectors of treatment and
block sums, respectively. The information matrix for the treatment effects
is known to be

Cd = Rd −NdK−1
d N′

d. (1)

Let µi (i = 0, 1, ..., v − 1) be eigenvalues of the matrix Cd and εdi
be eigen-

values of the matrix Cd with respect to the matrix Rd, i.e.

Cdpi = εdi
Rdpi (2)

where pi are eigenvectors. Assume that 0 = εd0 ≤ εd1 ≤ ... ≤ εdv−1 ≤ 1 and

φA/R(d) =
v−1∑

i=v−h

ε−1
di

, φD/R(d) =
v−1∏

i=v−h

ε−1
di

,

φE/R(d) = εdv−h
, φL/R(d) =

v−1∑
i=v−h

εdi
,

(3)
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where h = r (Cd) and r (Cd) denote the rank of Cd. Note that h ≤ v − 1.
If h = v − 1 then design d is said to be connected.

The design d is A- or D-optimal if it minimizes the φA/R(d) or φD/R(d)
values among all possible ones from some class of designs. A design d is
E- or L-optimal if it maximizes the φE/R(d) or φL/R(d) values among all
possible ones from some class of designs. The A-, D-, E- and L-efficiency
of a design d is defined to be

eA/R(d) =
φA/R (d∗A)
φA/R(d)

, eD/R(d) =
φD/R (d∗D)
φD/R(d)

,

eE/R(d) =
φE/R (d)

φE/R

(
d∗E

) , eL/R(d) =
φL/R (d)

φL/R

(
d∗L

) ,

(4)

where d∗A, d∗D, d∗E and d∗L are A-, D-, E- and L-optimal designs, respectively.
It is worth mentioning that 0 ≤ eA/R(d) ≤ 1 , 0 ≤ eD/R(d) ≤ 1,

0 ≤ eE/R(d) ≤ 1 and 0 ≤ eL/R(d) ≤ 1 therefore if eA/R(d) = 1 or eD/R(d) =
1 or eE/R(d) = 1 or eL/R(d) = 1 then design d is A-, D-, E- and L-optimal,
respectively.

One problem with the above definitions is that optimal designs are
known only for some special cases. Therefore, in the next section lower
bounds of eA/R, eD/R, eE/R and eL/R will be given for appraising the
efficiencies of design d. It should be noted that functions (3) and efficiencies
(4), where Cdpi = εdi

pi, are given by Brzeskwiniewicz (1996).

3. Results

3.1. Lower bounds of eA/R and eD/R

Let Ωn,v,b,kmax,h denote the set of all block designs with the some pa-
rameters (n, v, b, kmax, h), where kmax = max{kdj

: j = 1, ..., b}. From
(2) we have

(
Rd

−1Cd

)
pi = εdi

pi which implies that εdi
are eigenvalues of

matrix Ad = Rd
−1Cd. Note that

tr (Ad) =
v∑

i=1

1−
b∑

j=1

n2
dij

rdi
kdj

 ≤ v −
v∑

i=1

1
rdi

kmax

b∑
j=1

ndij
=

= v −
v∑

i=1

1
kmax

=
v (kmax − 1)

kmax

(5)
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and

ε̄di
=

∑v−1
i=v−h εdi

h
≤ v (kmax − 1)

hkmax
. (6)

Observe that

v−1∑
i=v−h

ε−1
di

≥ h

ε̄di

and
v−1∏

i=v−h

ε−1
di

≥
(

1
ε̄di

)h

. (7)

From (3), (5) and (6) we have φA/R (d∗A) ≥ h2kmax
v(kmax−1) and φD/R (d∗D) ≥(

hkmax
v(kmax−1)

)h
. From these inequalities and from (4) it follows that eA/R (d) ≥

h2kmax
v(kmax−1)φA/R(d) and eD/R (d) ≥

(
hkmax

v(kmax−1)

)h
· 1

φD/R(d) , and consequently
two efficiency lower bounds of eA/R and eD/R are defined as

e
′

A/R (d) = h2kmax
v(kmax−1)φA/R(d) ,

e
′

D/R (d) =
(

hkmax
v(kmax−1)

)h
1

φD/R(d) .
(8)

3.2. Lower bounds of eE/R

From Brzeskwiniewicz (1989) it follows that if design d contains a block
which consists of m treatments and 2 ≤ m ≤ v − 1, then µd1 ≤ PCd

(m)
and µd1 ≤ TCd

, where µdi
denotes the eigenvalues of Cd with 0 = µd0 <

µd1 ≤ ... ≤ µdv−1

PCd
(m) =

v

m(v −m)
·

m∑
i=1

rdi
(kmax − 1)− kmax (kd1 − 1)

kmax
,

TCd
=

v

v − 1
· rmin (kmax − 1)

kmax
,

(9)

where rmax = max{rd1 , ..., rdm} and rmin = min{rd1 , ..., rdm}.
In the above it is assumed, possibly by relabelling the treatments and

reshuffling the blocks, that the first block in design d consists of m treat-
ments with numbers 1, ...,m. Note that a proof of (9) if rd1 = rd2 = ... =
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rdv = rd and kd1 = kd2 = ... = kdb
= kd, is also given by Constantine

(1982). From (9) we have

εd1 ≤
PCd

(m)
rmin

≤ Pd(m) and εd1 ≤
TCd

(m)
rmin

= Td, (10)

where Pd(m) = v
m(v−m) ·

mrmax(kmax−1)−kmax(kd1
−1)

kmaxrmin
and Td = v

(v−1) ·
kmax−1

kmax
.

Observe that from (10) we have

εd1 ≤ min{Pd(m), Td}. (11)

From (3) and (11) it follows that

φE/R (d∗E) ≤ min{Pd(m), Td} (12)

which with (4) leads to

eE/R (d) ≥
φE/R (d)

min{Pd(m), Td}
. (13)

From the above formula the lower bound of eE/R is defined by

e
′

E/R (d) =
φE/R (d)

min{Pd(m), Td}
. (14)

Note that examples of block designs with very high E-efficiency are
given by Brzeskwiniewicz and Krzyszkowska (2007).

3.3. Lower bounds of eL/R

From (3) and (5) we have

φL/R (d∗L) ≤ v (kmax − 1)
kmax

. (15)

The above formula and (4) imply that

eL/R (d) ≥
kmaxφL/R(d)
v (kmax − 1)

(16)

and consequently the lower bound of eL/R is defined by

e′L/R (d) =
kmaxφL/R(d)
v (kmax − 1)

. (17)



28 H. Brzeskwiniewicz, J. Krzyszkowska

4. Conclusion

Note that 0 ≤ e′A/R(d) ≤ 1, 0 ≤ e′D/R(d) ≤ 1, 0 ≤ e′E/R(d) ≤ 1,
0 ≤ e′L/R(d) ≤ 1. If e′A/R(d) = 1 or e′D/R(d) = 1 or e′E/R(d) = 1 or
e′L/R(d) = 1 then design d is A-, D-, E- or L-optimal, respectively which
follows from (4). When the design d gives e′A/R(d) (or e′D/R(d) or e′E/R(d) or
e′L/R(d)) close to one, then one can say that its A (or D or E or L) optimality
is high. And on the other hand, a value for e′A/R(d) (or e′D/R(d)or e′E/R(d)
or e′L/R(d)) close to zero indicates that the discussed design is far from
being an A-optimal (or D-optimal or E-optimal or L-optimal) one.

5. Examples

We consider A-, D-, E-, L-efficiency of the following block designs:

(i)
i\j 1 2 3 4 5 6 rdi

1 4 4 3 3 3 3 20
2 1 0 0 1 1 1 4
3 1 0 1 0 1 1 4
4 0 1 1 1 0 1 4
5 0 1 1 1 1 0 4

kdj
6 6 6 6 6 6 36

(ii)
i\j 1 2 3 4 5 6 rdi

1 1 1 1 1 1 1 6
2 1 1 1 0 0 0 3
3 1 1 0 0 0 0 2
4 1 0 1 0 0 0 2

kdj
4 3 3 1 1 1 13

In case (i) d ∈ Ω36,5,6,6,4 and εd0 = 0, εd1 = 105
120 , εd2 = εd3 = 115

120 ,
εd4 = 117

120 . Firstly, we calculate φ·/R(d), Td and Pd(3) occurring respec-
tively in (3), (10) and (9) as: φA/R(d) = 120

(
1

105 + 2
115 + 1

117

)
= 4.26,

φD/R(d) = 120
105 ·

(
120
115

)2 · 120
117 = 1.28, φE/R(d) = 105

120 = 0.875, φL/R(d) =
1

120 (105 + 2 · 115 + 117) = 452
120 = 3.77, Td = 5

4 ·
5
6 = 1.04, Pd(3) = 5

3·2 ·
3·20·5−6·5

6·4 = 9.375. Hence according to formulae (8), (14) and (17) we ob-
tain: e′A/R(d) = 42·6

5·5·4.26 = 0.90, e′D/R(d) =
(

4·6
5·5

)4 · 1
1.28 = 0.66, e′E/R(d) =

0.875
min{1.04,9.375} = 0.84, e′L/R(d) = 6·3.77

5·5 = 0.90. We can say that the A-, D-,
E- and L-efficiency of the design (i) are high.

In case (ii) d ∈ Ω13,4,6,4,3 and εd0 = 0, εd1 = 0.83, εd2 = 0.98, εd3 = 0.64.
According to formulae as in case (i) we obtain: φA/R(d) = 3.77, φD/R(d) =
1.90, φE/R(d) = 0.83, φL/R(d) = 2.46, Td = 1, Pd(3) = 7, e′A/R(d) = 0.80,
e′D/R(d) = 0.53, e′E/R(d) = 0.83, e′L/R(d) = 0.82. We can say that the A-,
D-, E- and L-efficiency of the design (ii) are high.
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